¿­·¢Æì½¢Ìü(Öйú)

¡ª Éú̬ ¡¤ Å©Òµ ¡¤ ½¡¿µ ¡ª
¹ú¼ÊºÏ×÷(Partners)
PlantScreen¸ßͨÁ¿Ö²Îï±íÐͳÉÏñ·ÖÎöƽ̨£¨´«ËÍ´ø°æ£©£¨¶þ£©

ʱ¼ä£º2020-04-22

×÷Õߣº¿­·¢Æì½¢Ìü(Öйú)

µã»÷Á¿£º

¼ò½é£º

¿­·¢Æì½¢Ìü(Öйú)

 

 PlantScreen¸ßͨÁ¿Ö²Îï±íÐͳÉÏñ·ÖÎöƽ̨£¨´«ËÍ´ø°æ£©£¨¶þ£©

 

10.¸ùϵ³ÉÏñ·ÖÎö

¡¤RhizoTron¸ù´°¼¼Êõ£¬È«×Ô¶¯³ÉÏñ·ÖÎö£¬±êÅä¸ù´°44x29.5x5.8cm£¨¸ßx¿íxºñ¶È£©

¡¤²»½ö¿É¶Ô¸ùϵ³ÉÏñ·ÖÎö£¬»¹¿É¶ÔµØÉÏÃ磨shoot£©½øÐгÉÏñ·ÖÎö£¬Ãç¸ß×î´ó50cm

¡¤ÐÂÒ»´úCMOS´«¸ÐÆ÷£¬·Ö±æÂÊ12.3MP

¡¤¾ùÒ»LED¹âÔ´

¡¤3²ã¶¨Î»£¨¶¥²¿¡¢Öв¿¡¢µ×²¿£©¸ùϵ½½¹àϵͳ£¨Ñ¡Å䣩£¬3¸öË®Ïä¶ÀÁ¢ÔËÐÐ

¡¤²âÁ¿²ÎÊý°üÀ¨£º¸ùÉ»ò¸ß¶È£©¡¢¸ù¹Ú¿í¶È¡¢¸ß¶ÈÓë¿í¶È±ÈÖµ¡¢¸ù¹ÚÃæ»ý¡¢¸ù¹Ú½ôʵ¶È¡¢¸ùϵ×ܳ¤¡¢Öá¶Ô³ÆÐÔ¡¢¸ù¼âÊý¡¢¸ù½ÚÊýµÈ

 

image.png

 

 

11.image.png×Ô¶¯½½¹àÓë³ÆÖص¥Ôª

¡¤²âÁ¿²ÎÊý£ºÊµ¼ÊÖØÁ¿¡¢½½Ë®Ìå»ý¡¢×îÖÕÖØÁ¿¡¢Ã¿¸öÅàÑøÅèµÄÏà¶ÔÖØÁ¿

¡¤²Ù×÷Ö¸Áÿ¸öÅàÑøÅè½½ÏàͬÁ¿µÄË®£¨¾ø¶Ô¿ËÊý»òÕßʵ¼ÊÖØÁ¿µÄ°Ù·Ö±È£©£»±£³ÖÏà¶ÔÖØÁ¿£»×Ô¶¨Òåÿ¸öÅàÑøÅèµÄ½½¹àÁ¿Ä£Äⲻͬ¸Éºµ»òÕßÄÚÀÔвÆÈ£»³ÆÖØÇ°×Ô¶¯ÁãУ׼£¬»¹¿Éͨ¹ýÒÑÖªÖØÁ¿£¨ÈçíÀÂ룩ÎïÆ·×Ô¶¯½øÐÐÔÙУ׼

¡¤Ã¿¸öÅàÑøÅèµÄ½½Ë®Á¿¡¢ÈÕÆÚ¡¢Ê±¼ä¿É·Ö±ð³ÌÐò¿ØÖƼǼÒÔ´´½¨²»Í¬¸ÉºµÐ²ÆÈÌݶȵÈ£¬²¢ÇÒÓëÕû¸öϵͳµÄ±íÐÍ´óÊý¾ÝÎÞ·ì½áºÏ·ÖÎö

¡¤³ÆÖؾ«¶È£º´óÐÍÖ²Îï¡À2g£¬Ð¡ÐÍÖ²Îï¡À0.2g

¡¤½½¹àµ¥Ôª£ºÁ÷ËÙ3L/min£¬½½¹à¿Ú¸ß¶È¿É×Ô¶¯ÉÏÏÂÇ°ºóµ÷Õû£¬±£Ö¤×î¼Ñ½½¹àλÖÃ

 

12.×Ô¶¯»¯Ö²Îï´«ËÍϵͳ

¡¤441.jpg´«ËÍÖ²Îï´óС£º¸ù¾Ý¿Í»§ÐèÇó£¬×î¸ß¿É´ï200cm

¡¤´«ËÍ´øÈÝÄÉÁ¿£º50ÅèÖ²Î1000ÖêСÐÍÖ²Î£¬¿ÉÀ©Õ¹100Åè¡¢200Åè¡¢400ÅèµÈ¸ü´óÈÝÁ¿ £»±íÐÍ·ÖÎöͨÁ¿ÒÀ²»Í¬µÄprotocol¶ø¶¨£¬100·ÖÖÓ¿ÉÒÔÍê³ÉÕû¸öϵͳÔغÉÖ²ÎïÑùÆ·µÄ±íÐÍ·ÖÎö£¬¿ÉËæ»ú´«ËÍÖÁ³ÉÏñÊÒ½øÐгÉÏñ·ÖÎö¡¢Ëæ»ú½½¹à

¡¤ÅàÑøÅ裺·ÀUV¾Û±ûÏ©²ÄÁÏ£¬±ê×¼5L£¨¿Ú¾¶24cm£©ÅàÑøÅ裬¿Éͨ¹ýÊÊÅäÆ÷Ó¦ÓÃ3LÅàÑøÅ裬¿É360¶ÈÐýת

¡¤¾ß±¸ÊÖ¶¯ÔØÑù»·£¨manual loading loop£©ÒÔ±ãÔÚϵͳ´ý»úģʽÏÂÊÖ¶¯ÔØÑù·ÖÎöʵÑ顢С×éʵÑé·ÖÎöµÈ

¡¤¾ß±¸¼¤¹âÖ²Îï¸ß¶È²âÁ¿¼à²âϵͳºÍ¼¤¹â¶¨Î»ÏµÍ³

¡¤»·Ðδ«ËÍͨµÀ£º¾ß±äËÙÏäµÄÈýÏàÒì²½Âí´ï£¬¹¦ÂÊ200-1000W£¬×î´ó¸ºÔØ500kg£¬ËÙ¶È150mm/s£¬´«ËÍ´ø²ÄÁÏΪ·ÀUV¸ßÄÍÓÃPVC

¡¤Òƶ¯¿ØÖÆϵͳ£ºÖÐÑë´¦Àíµ¥ÔªCJ2M-CPU33£»Êý×ÖÊäÈë/Êä³ö×î´ó2560µã£»ÊäÈë/Êä³öµ¥Ôª×î´ó40£»Î¶ȴ«¸ÐÆ÷Pt1000£¬Pt100£¬PTC£»PLCͨѶ°ÙÕ×ÒÔÌ«Íø£»OMRON MECHATROLINK-II ×î´ó16Öᾫȷ¶¨Î»

¡¤RFID±êÇ©ºÍQRÖ²Îï±æʶϵͳ£¬×Ô¶¯¶Áȡÿ¸öÑùÆ·ÍÐÅÌÉϵĶþά±àÂ룻±æʶ¾àÀë2-20cm£»Í¨Ñ¶RS485£»¿É¶ÁÈ¡1ά¡¢2άºÍQRÂ룻Å䱸LED¹âÔ´±ãÓÚÈõ¹âϱæʶ

¡¤»·¾³¼à²â´«¸ÐÆ÷£ºÎÂʪ¶È´«¸ÐÆ÷¡¢PAR¹âºÏÓÐЧ·øÉä´«¸ÐÆ÷

¡¤ÓÉÖ÷¿ØÖÆϵͳ·Ö±ð×Ô¶¯µ÷¿Øÿһ¸öÑùÆ·ÍÐÅ̵IJâÁ¿Ê±¼ä¡¢²âÁ¿Ë³Ðò¡¢²âÁ¿²ÎÊý¡¢½½¹àʱ¼äºÍ½½¹àÁ¿£¬´Ó²âÁ¿µ¥Ôªµ½ÅàÑøÊÒµÄÑùÆ·ÔËתÕû¸ö¹ý³Ì¿ÉʵÏÖÍêÈ«×Ô¶¯¿ØÖÆ£¬ÔÚÎÞÈËÖµÊØÇé¿öϸù¾ÝÔ¤Éè³ÌÐò×ÔÐÐÍê³ÉÈ«²¿ÊµÑé²âÁ¿¹¤×÷¡£

 

13.Ö÷¿ØÖƱíÐÍ´óÊý¾Ýƽ̨

¡¤×é³É£º¿ØÖƵ÷¶È·þÎñÆ÷¡¢¿Í»§¶ËÓ¦Ó÷þÎñÆ÷¡¢Êý¾Ý·þÎñÆ÷¡¢¿É±à³ÌÐòÂß¼­¿ØÖÆÆ÷¼°×¨Òµ·ÖÎöÈí¼þµÈ£¬Êý¾ÝÈÝÁ¿12TB

¡¤×Ô¶¯¿ØÖÆÓë·ÖÎö¹¦ÄÜ£º¾ß±¸Óû§¶¨Òå¡¢¿É±à¼­×Ô¶¯²âÁ¿³ÌÐò£¨protocols£©£¬¸ù¾ÝÓû§É趨³ÌÐò×Ô¶¯Íê³ÉÈ«²¿ÊµÑé¡£Êý¾Ý½á¹û×Ô¶¯´æ´¢²¢·ÖÎö£¬·ÖÎöµÄÊý¾Ý½á¹û¿É×Ô¶¯ÒÔ¶¯Ì¬ÇúÏßµÄÐÎʽÏÔʾ¡£

 

image.png

 

¡¤MySQLÊý¾Ý¿â¹ÜÀíϵͳ£¬¿ÉÒÔ´¦ÀíÓµÓÐÉÏǧÍòÌõ¼Ç¼µÄ´óÐÍÊý¾Ý¿â£¬Ö§³Ö¶àÖÖ´æ´¢ÒýÇ棬Ïà¹ØÊý¾Ý×Ô¶¯´æ´¢ÓÚÊý¾Ý¿âÖеIJ»Í¬±íÖÐ

¡¤Ö²Îï±àÂë×¢²á¹¦ÄÜ£º°üÀ¨Ö²Îïʶ±ðÂë¡¢ËùÔÚÍÐÅ̵Äʶ±ðÂëµÈ´æ´¢ÔÚÊý¾Ý¿âÖУ¬²âÁ¿Ê±×Ô¶¯ÌáÈ¡×Ô¶¯¶ÁÈ¡ÌõÐÎÂë»òRFID±êÇ©

¡¤´¥ÃþÆÁ²Ù×÷½çÃ棬ÔÚÏßÏÔʾֲÎïÍÐÅÌÊýÁ¿¡¢¹âÏßÇ¿¶È¡¢·ÖÎö²âÁ¿×´Ì¬¼°½á¹ûµÈ£¬ÇáËÉͨ¹ýÈí¼þÍêÈ«¿ØÖÆËùÓеĻúе²¿¼þºÍ³ÉÏñ¹¤×÷Õ¾

¡¤¿ÉÓÃĬÈϳÌÐò½øÐÐËùÓвâÁ¿£¬Ò²¿Éͨ¹ý¿ª·¢¹¤¾ß´´½¨×Ô¶¨ÒåµÄ¹¤×÷¹ý³Ì£¬»òÕßÊÖ¶¯²Ù×÷LED¹âÔ´¿ªÆô»ò¹Ø±Õ¡¢RGB³ÉÏñ¡¢Ò¶ÂÌËØÓ«¹â³ÉÏñ¡¢¸ß¹âÆ׳ÉÏñ¡¢ºìÍâÈȳÉÏñ¡¢3D¼¤¹âɨÃè¡¢³ÆÖؼ°½½¹àµÈ

¡¤Ò¶Æ¬¸ú×Ù¼à²â¹¦ÄÜ£¨leaf tracking£©Ä£¿é£¬¿ÉÒÔ³ÖÐø¸ú×Ù¼à²âҶƬµÄÉú³¤¡¢±ä»¯µÈµÈ

¡¤3DͶÉä¼¼Êõ£¬¿ÉÒÔͨ¹ý¸ß·Ö±æÂÊRGB¾µÍ· »ò¼¤¹âɨÃè¹¹½¨3DÄ£ÐÍ£¬Í¨¹ýͶÉä¼¼Êõ£¬½«ÓëÆäËü´«¸ÐÆ÷ËùµÃÊý¾ÝÈçÒ¶ÂÌËØÓ«¹â¡¢ºìÍâÈȳÉÏñζÈÊý¾Ý¡¢½üºìÍâÊý¾Ý¡¢¸ß¹âÆ×Êý¾ÝµÈͶÉäÔÚ3DÄ£ÐÍÉÏÒ»Æð½øÐжԱȷÖÎöµÈ

¡¤ÔÊÐíÓû§Í¨¹ý»¥ÁªÍøÔ¶³Ì·ÃÎÊ£¬½øÐÐÊý¾Ý´¦Àí¡¢ÏÂÔؼ°¸ü¸ÄʵÑéÉè¼Æ

¡¤Ëù²âÁ¿µÄËùÓÐÊý¾Ý¶¼ÊÇ͸Ã÷µÄ¡¢¿ÉÒÔ×·ËݵÄ

¡¤¾ß±¸Óû§È¨ÏÞ·Ö¼¶¹¦ÄÜ£¬·ÀÖ¹ÆäËûÈËÔ±Îó²Ù×÷Ó°ÏìʵÑé

¡¤³§¼ÒÔ¶³Ì¹ÊÕÏÕï¶Ï£¬Èí¼þÖÕÉíÃâ·ÑÉý¼¶

 

image.png

 

Ö´Ðбê×¼£º

¡¤CEÈÏÖ¤±ê×¼

¡¤CSN EN 60529 ·À»¤µÈ¼¶±ê×¼

¡¤CSN 33 01 65 µ¼Ìå²àʶ±ð±ê×¼

¡¤CSN 33 2000-3 »ù´¡ÌØÐÔ±ê×¼

¡¤CSN 33 2000-4-41ed.2 µç»÷±£»¤±ê×¼

¡¤CSN 33 2000-4-43 µçÔ´¹ýÔر£»¤±ê×¼

¡¤CSN 33 2000-5-51ed.2 ͨÓùæÔò±ê×¼

¡¤CSN 33 2000-5-523 ÈÝÐíµçÁ÷±ê×¼

¡¤CSN 33 2000-5-54ed.2 ½ÓµØÓë±£»¤µ¼Ìå±ê×¼

¡¤CSN EN 55011 ¹¤Òµ¡¢¿ÆѧÓëҽѧÉ豸²âÁ¿µç´Å¸ÉÈŵķ¶Î§Óë·½·¨

¡¤2006/42/EG »úеָÁî±ê×¼

¡¤73/23/EEG µÍµçѹָÁî±ê×¼

¡¤2004/108/EG µç´ÅÏàÈÝÐÔÖ¸Áî±ê×¼

 

¸½£º²¿·Ö²Î¿¼ÎÄÏ×

1.M. Sorrentino, G. Colla, Y. Rouphaelouphael, K. Panzarov¨¢, M. Trt¨ªlek. 2020. Lettuce reaction reaction to drought stress: automated high-throughput phenotyping of plant growth and photosynthetic performance. ISHS Acta Horticulturae 1268.

2.Adhikari, P., Adhikari, T. B., Louws, F.F. J., & Panthee, D. R. 2020. Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences, 21(5), 1734.

3.Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Et Al. 2020. Crop Phenomics and High-throughput Phenotyping: Past Decades, Current rent Challenges and Future Perspectives. Molecular Plant, 13(2), 187-214

4.Husi?kov¨¢, A., Humpl¨ªk, J. F., H?bl, M.,M., Sp¨ªchal, L., & Laz¨¢r, D. 2019. Analysis of Cold-Developed vs. Cold-Acclimated Leaves Reveals Various Strategies of Cold Acclimation of Field Pea Cultivars. Remote Sensing, 11(24), 2964

5.Singh, A.K., Yadav, B.S., Dhanapal, S., Berliner, M., Finkelshtein, A., Chamovitz, D.A. 2019. CSN5A Subunit of COP9 Signalosome Temporally Buffers Response to Heat in Arabidopsis. Biomolecules 2019, 9, 805.

6.Jane?kov¨¢, H., Husi?kov¨¢, A., Laz¨¢r, D., Ferretti, U., Posp¨ª?il, P., & ?pundov¨¢, M. 2019. Exogenous application of cytokinin during dark senescence eliminates the acceleration of photosystem II impairment caused by chlorophyll b deficiency in barley. Plant Physiology and Biochemistry, 136, 43¨C51

7.Marchetti, C. F., Ugena, L., Humpl¨ªk, J. F., Pol¨¢k, M., et al. 2019. A Novel Image-Based Screening Method to Study Water-Deficit Response and Recovery of Barley Populations Using Canopy Dynamics Phenotyping and Simple Metabolite Profiling. Frontiers in Plant Science, 10, 1252.

8.Rungrat T., Almonte A. A., Cheng R.,R., et al. 2019. A Genome-Wide Association Study of Non-Photochemical Quenching in response to local seasonal climates in Arabidopsis thaliana, Plant Direct, 3(5), e00138

9.Pavicic M, et al. 2019. High throughput invitro seed germination screen identifed new ABA responsive RING?type ubiquitin E3 ligases inArabidopsis thaliana. Plant Cell, Tissue and Organ Culture 139: 563-575

10.Wen Z., et al. 2019. Chlorophyll fluorescence imaging for monitoring effects of Heterobasidion parviporum small secreted protein induced cell death and in planta defense gene expression. Fungal Genetics and Biology 126: 37-49

11.Gao G., Tester M. A., Julkowska M. 2019. The use of high throughput phenotyping for assessment of heat stress-induced changes in Arabidopsis. Biorvix, 838102.

12.Paul K., Sorrentino M., Lucini L., Rouphaelouphael Y. F., Cardarelli M., Bonini P., Begona M., Reyeynaud H.E., Canaguier R., Trt¨ªlek M., Panzarov¨¢ K., Colla G. 2019. A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-derived Protein Hydrolysate on Tomato Grown un under Limited Water Availability. Frontiers in Plant Science, 10:493

13.Wang L., Poque S., Valkonen J. P. T. 2019. Phenotyping viral infection in sweetpotato using a high-throughput chlorophyll fluorescence and thermal imaging platform. Plant Methods, 15, 116

14.Paul K, Sorrentino M, Lucini L, Rouphaelouphael Y, Cardarelli M, Bonini P, Reynaud H,H, Canaguier R, Trt¨ªlek M, Panzarov¨¢ K, Colla G. 2019. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato. Frontiers in Plant Science, 10:47.

15.Gonzalez-Bayon, R., Shen, Y., Groszman, M., Zhu, A., Wang, A., et al. 2019. Senescence and defense pathways contribute to heterosis. Plant Physiology, 180, 240¨C252.

16.Julkowska, M. M., Saade, S., Agarwal Al, G., Gao, G., Pailles, Y., et al. 2019. MVApp¨CMultivaria analysis application for streamlined data analysis and curation. Plant Physiology, 180, 1261¨C1276.

17.Ganguly D. R., Stone B. A B., Eichten S. E., Pogson B. J. 2019. Excess light priming in Arabidopsis thaliana genotypes with altered DNA methylomes, G3: Genes, Genomes, Genetics, 9(11), 3611-3621

18.Ameztoy, K., Baslam, M., S¨¢nchez-L¨®pe¨®pez, ?. M., Mu?oz, F. J., et al. 2019. Plant responses to fungal volatiles involve global post-translational thiol redox proteome changes that affect photosynthesis. Plant, Cell & Environment, 42(9), 2627-2644.

19.Adhikari N. D., Simko I., Mou B. 2019. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors 19, 4814.

20.Ugena L, H?lov¨¢ A, Podle?¨¢kov¨¢ K,K, Humpl¨ªk J.F., Dole?al K, Diego N, Sp¨ªchal L. 2018. Characterization of Biostimulant Mode of Action Using Novel Multi-Trait High-Throughput Screening of of Arabidopsis Germination and Rosette Growth. Frontiers in Plant Science, 9:1327.

21.Lyu, J. I., Kim, J. H., Chu, H., Taylor, M.M. A., Jung, S., et al. 2018. Natural allelic variation of GVS1 confers diversity in the regulation of leaf senescence in Arabidopsis. New Phytologist, 221(4), 2320-2334

22.Ganguly D. R., Crisp P. A., Eichten S. R., et al. 2018. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell and Environment. 41(7), 1657-1672.

23.Rouphael Y., Sp¨ªchal L., Panzarov¨¢ K.,K., et al. 2018. High-throughput Plant Phenotypin ping for Developing Novel Biostimulants: From Lab to Field or FroFrom Field to Lab? Front. Plant Sci., 9:1197.

24.Coe R. A., Chatterjee J., Acebron K., et al. 2018. High-throughput chlorophyll fluorescence screening of Setaria viridis for mutants with altered CO2 compensation points. Functional Plant Biology. 45(10), 1017-1025

25.Fichman Y., Koncz Z., Reznik N., et al. 2018. SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. Plant Science. 41(7), 1657-1672

26.Sytar O., Zivcak M., Olsovska K., Brestic M. 2018. Perspectives in High-Throughput Phenotyping of Qualitative Traits at the Whole-Plant Level. In: Sengar R., Singh A. eds Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore, 213-243.

27.De Diego N., F¨¹rst T., Humpl¨ªk J. F., et al. 2017. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions. Frontiers in Plant Science. 8.

28.Lobos G. A., Camargo A. V., del Pozo A., et al. 2017. Editorial: Plant Phenotyping and Phenomics for Plant Breeding. Front. Plant Sci. 8.

29.Pavicic M., Mouhu K., Wang F., et al. 2017. Genomic and Phenomic Screens for Flower Related RING Type Ubiquitin E3 Ligases in Arabidopsis. Frontiers in Plant Scienc. Volume 8.

30.Rungrat T., Awlia M., Brown M. et al. 2017. Monitoring Photosynthesis by In Vivo Chlorophyll Fluorescence: Application to High-Throughput Plant Phenotyping. The Arabidopsis Book 14: e0185. 2016

31.Simko I., Hayes R. J. and Furbank R. T. 2017. Non-destructive Phenotyping of Lettuce Plants in Early Stages of Development with Optical Sensors. Frontiers in Plant Science. 2016;7:1985.

32.Sytar O., Brestic M., Zivcak M., et al. 2017. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. In Science of The Total Environment, 578, 90-99.

33.Sytar O., Br¨¹ckov¨¢ K., Kov¨¢r M., et al. 2017. Nondestructive detection and biochemical quantification of buckwheat leaves using visible VIS and near-infrared NIR hyperspectral reflectanceimaging. Journal of Central European Agriculture. 184, 864-878

34.Tschiersch H., Junker A., Meyer R. C., & Altmann, T. 2017. Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods, 13, 54.

35.Weber J., Kunz, C., Peteinatos, G., et al. 2017. Utilization of Chlorophyll Fluorescence Imaging Technology to Detect Plant Injury by Herbicides in Sugar Beet and Soybean. Weed Technology, 1-13.

36.Awlia M., Nigro A., Fajkus J., Schm?ckel S.M., Negr?o S., Santelia D., Trt¨ªlek M., Tester M., Julkowska M.M. and Panzarov¨¢ K. 2016: High-throughput non-destructive phenotyping of traits contributing to salinity tolerance in Arabidopsis thaliana. Submitted Frontiers in Plant Sciences.

37.Bell J. and Dee M. H. 2016. The subset-matched Jaccard index for evaluation of Segmentation for Plant Images. Front Plant Sci. 2016; 7: 1985.

38.Bell J. and Dee M. H. 2016. Watching plants grow ¨C a position paper on computer vision and Arabidopsis thaliana. IET Computer Vision. Volume 11, Issue 2, March 2017, p. 113 ¨C 121.

39.Bush M.S., Pierrat O, Nibau C, et al.2016. eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and is Modulated by Phosphorylation. Plant Physiol. 2016 Jul 7,

40.Cruz J. A., Savage L. J., Zegarac R., et al. 2016. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes. Cell Systems, Volume 2, Issue 6, 2016, Pages 365-377.

41.Sytar O., Brestic M., Zivcak M . 2016. Noninvasive Methods to Support Metabolomic Studies Targeted at Plant Phenolics for Food and Medicinal Use.  Plant Omics: Trends and Applications.

42.Humplik J.F., Lazar D., Husickova A. and Spichal L. 2015: Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses ¨C a review. Plant Methods 11:29.

43.Humplik J.F., Lazar D., F¨¹rst, T., Husickova A., Hybl, M. and Spichal L. 2015: Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea Pisum sativum L.. Plant Methods 19;11:20.

44.Brown T.B., Cheng R., Sirault R.R., Rungrat T., Murray K.D., Trtilek M., Furbank R.T., Badger M., Pogson B.J., and Borevitz J.O. 2014: TraitCapture: genomic and environment modelling of plant phenomic data. Current Opinion in Plant Biology 18: pp. 73-79.

45.Mariam Awlia, et.al, 2016, High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana, Frontiers in Plant Science, DOI: 10.3389/fpls.2016.01414

46.Ivan Simko, et.al, 2016, Phenomic approaches and tools for phytopathologists, Phytopathology, DOI: 10.1094/PHYTO-02-16-0082-RVW

47.Tepsuda Rungrat, et.al, 2016, Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery, The Arabidopsis Book 14: e0185, The American Society of Plant Biologists, DOI: http://dx.doi.org/10.1199/tab.0185

48.Jorge Marques da Silva, 2016, Monitoring Photosynthesis by In Vivo Chlorophyll Fluorescence: Application to High-Throughput Plant Phenotyping, Applied Photosynthesis - New Progress, Edition 1, Chapter 1, pp:3-22, DOI: http://dx.doi.org/10.5772/62391

49.Maxwell S. Bush, et.al, 2016, eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and is Modulated by Phosphorylation. Plant Physiol., DOI: 10.1104/pp.16.00435

50.?ngela Mar¨ªa S¨¢nchez-L¨®pez, et.al, 2016, Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action, Plant, Cell and Environment, DOI: 10.1111/pce.12759

51.Jan Humpl¨ªk, et.al, 2015, Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses ¨C a review, Plant Methods, 11: 29

52.Jan Humpl¨ªk, et.al, 2015, Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea Pisum sativum L., Plant Methods, 11: 20

53.Pip Wilson, et.al, 2015, Genomic Diversity and Climate Adaptation in Brachypodium, Chapter Genetics and Genomics of Brachypodium, Volume 18 of the series Plant Genetics and Genomics: Crops and Models, pp:107-127

54.Tim Brown, et.al, 2014, TraitCapture: genomic and environment modelling of plant phenomic data, Current Opinion in Plant Biology, 18: 73-79

55. Jan Humpl¨ªk, et.al, 2014, High-throughput plant phenntyping facility in Palacky University in Olomouc, International Symposium on Auxins and Cytokinins in Plant Development

 

¸½£ºÆäËü±íÐÍ·ÖÎöƽ̨£º

1¡¢FKM¶à¹âÆ×Ó«¹â¶¯Ì¬ÏÔ΢³ÉÏñϵͳ

image.png

ÓÒͼÒý×Ô¡¶Nature Plants¡·2016, Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency by Heather M. WhitneyµÈ

 

2¡¢PlantScreen-RÒƶ¯Ê½±íÐÍ·ÖÎöƽ̨£¨ÏÂ×óͼ£©£ºÓÃÓÚ´óÌïÖ²ÎïÒ¶ÂÌËØÓ«¹â³ÉÏñ·ÖÎö¡¢RGB³ÉÏñ·ÖÎö¡¢ºìÍâÈȳÉÏñ·ÖÎö¡¢3D¼¤¹âɨÃè²âÁ¿·ÖÎöµÈ

 

image.png

 

3¡¢PlantScreen̨ʽ¼°Òƶ¯Ê½Ö²Îï±íÐÍ·ÖÎöƽ̨£¨²Î¼ûÉÏÓÒͼ£©

1)3D RGB²ÊÉ«³ÉÏñ·ÖÎö

2)FluorCamÒ¶ÂÌËØÓ«¹â³ÉÏñ·ÖÎö

3)FluorCam¶à¹âÆ×Ó«¹â³ÉÏñ·ÖÎö

4)¸ß¹âÆ׳ÉÏñ·ÖÎö

5)ºìÍâÈȳÉÏñ·ÖÎö

6)PARÎüÊÕ£¯NDVI³ÉÏñ·ÖÎö

7)½üºìÍâ3D³ÉÏñ·ÖÎö

 

4¡¢PlantScreenÑù´øʽ±íÐÍ·ÖÎöƽ̨

 

image.png

 

5¡¢PlantScreen Ö²Îï±íÐÍÈýά×Ô¶¯É¨Ãè³ÉÏñ·ÖÎöƽ̨

 

image.png

 

 

 

- ·µ»ØÁбí -
¿´²»Ç壿»»Ò»ÕÅ
{{isLoading?'±£´æÖÐ':'±£´æ'}}

Î÷°²Ñз¢ÖÐÐÄ

΢ÐŹ«ÖÚºÅ

ÒµÎñ×Éѯ

΢ÐźÅ

¿­·¢Æì½¢Ìü(Öйú)¹«Ë¾

΢ÐŹ«ÖÚºÅ

¿­·¢Æì½¢Ìü(Öйú)¹«Ë¾

ÊÓƵºÅ

ÁªÏµÎÒÃÇ£º

µØÖ·: ±±¾©Êк£µíÇø¸ßÀïÕÆ·3ºÅÔº6ºÅÂ¥1µ¥Ôª101B

µç»°: 010-82611269/1572

ÊÖ»ú: 13671083121

´«Õæ: 010-62465844

Email: info@eco-tech.com.cn

ÓÑÇéÁ´½Ó£º

X
1

QQÉèÖÃ

  • ¿Í·þ
5

µç»°ºÅÂë¹ÜÀí

  • ±±¾© 010-82611269 13671083121
6

¶þάÂë¹ÜÀí